177 research outputs found

    Perceived Vertical and Lateropulsion: Clinical Syndromes, Localization, and Prognosis

    Get PDF
    We present a clinical classification of central vestibular syndromes according to the three major planes of action of the vestibulo-ocular reflex: yaw, roll, and pitch. The plane-specific syndromes are determined by ocular motor, postural, and percep tual signs. Yaw plane signs are horizontal nystagmus, past pointing, rotational and lat eral body falls, deviation of perceived straight-ahead to the left or right. Roll plane signs are torsional nystagmus, skew deviation, ocular torsion, tilts of head, body, and perceived vertical in a clockwise or counterclockwise direction. Pitch plane signs are upbeat/downbeat nystagmus, forward/backward tilts and falls, deviations of the per ceived horizon. The thus defined vestibular syndromes allow a precise topographic analysis of brainstem lesions according to their level and side. Special emphasis is placed on the vestibular roll plane syndromes of ocular tilt reaction, lateropulsion in Wallenberg's syndrome, thalamic and cortical astasia and their association with roll plane tilt of perceived vertical. Recovery is based on a functionally significant central compensation of a vestibular tone imbalance, the mechanism of which is largely un known. Physical therapy may facilitate this central compensation, but this has not yet been proven in prospective studies

    Perception of Verticality and Vestibular Disorders of Balance and Falls

    Get PDF
    Objective: To review current knowledge of the perception of verticality, its normal function and disorders. This is based on an integrative graviceptive input from the vertical semicircular canals and the otolith organs.Methods: The special focus is on human psychophysics, neurophysiological and imaging data on the adjustments of subjective visual vertical (SVV) and the subjective postural vertical. Furthermore, examples of mathematical modeling of specific vestibular cell functions for orientation in space in rodents and in patients are briefly presented.Results: Pathological tilts of the SVV in the roll plane are most sensitive and frequent clinical vestibular signs of unilateral lesions extending from the labyrinths via the brainstem and thalamus to the parieto-insular vestibular cortex. Due to crossings of ascending graviceptive fibers, peripheral vestibular and pontomedullary lesions cause ipsilateral tilts of the SVV; ponto-mesencephalic lesions cause contralateral tilts. In contrast, SVV tilts, which are measured in unilateral vestibular lesions at thalamic and cortical levels, have two different characteristic features: (i) they may be ipsi- or contralateral, and (ii) they are smaller than those found in lower brainstem or peripheral lesions. Motor signs such as head tilt and body lateropulsion, components of ocular tilt reaction, are typical for vestibular lesions of the peripheral vestibular organ and the pontomedullary brainstem (vestibular nucleus). They are less frequent in midbrain lesions (interstitial nucleus of Cajal) and rare in cortical lesions. Isolated body lateropulsion is chiefly found in caudal lateral medullary brainstem lesions. Vestibular function in the roll plane and its disorders can be mathematically modeled by an attractor model of angular head velocity cell and head direction cell function. Disorders manifesting with misperception of the body vertical are the pusher syndrome, the progressive supranuclear palsy, or the normal pressure hydrocephalus; they may affect roll and/or pitch plane.Conclusion: Clinical determinations of the SVV are easy and reliable. They indicate acute unilateral vestibular dysfunctions, the causative lesion of which extends from labyrinth to cortex. They allow precise topographical diagnosis of side and level in unilateral brainstem or peripheral vestibular disorders. SVV tilts may coincide with or differ from the perception of body vertical, e.g., in isolated body lateropulsion

    Perception of Verticality and Vestibular Disorders of Balance and Falls

    Get PDF
    Objective: To review current knowledge of the perception of verticality, its normal function and disorders. This is based on an integrative graviceptive input from the vertical semicircular canals and the otolith organs. Methods: The special focus is on human psychophysics, neurophysiological and imaging data on the adjustments of subjective visual vertical (SVV) and the subjective postural vertical. Furthermore, examples of mathematical modeling of specific vestibular cell functions for orientation in space in rodents and in patients are briefly presented. Results: Pathological tilts of the SVV in the roll plane are most sensitive and frequent clinical vestibular signs of unilateral lesions extending from the labyrinths via the brainstem and thalamus to the parieto-insular vestibular cortex. Due to crossings of ascending graviceptive fibers, peripheral vestibular and pontomedullary lesions cause ipsilateral tilts of the SVV; ponto-mesencephalic lesions cause contralateral tilts. In contrast, SVV tilts, which are measured in unilateral vestibular lesions at thalamic and cortical levels, have two different characteristic features: (i) they may be ipsi- or contralateral, and (ii) they are smaller than those found in lower brainstem or peripheral lesions. Motor signs such as head tilt and body lateropulsion, components of ocular tilt reaction, are typical for vestibular lesions of the peripheral vestibular organ and the pontomedullary brainstem (vestibular nucleus). They are less frequent in midbrain lesions (interstitial nucleus of Cajal) and rare in cortical lesions. Isolated body lateropulsion is chiefly found in caudal lateral medullary brainstem lesions. Vestibular function in the roll plane and its disorders can be mathematically modeled by an attractor model of angular head velocity cell and head direction cell function. Disorders manifesting with misperception of the body vertical are the pusher syndrome, the progressive supranuclear palsy, or the normal pressure hydrocephalus; they may affect roll and/or pitch plane. Conclusion: Clinical determinations of the SVV are easy and reliable. They indicate acute unilateral vestibular dysfunctions, the causative lesion of which extends from labyrinth to cortex. They allow precise topographical diagnosis of side and level in unilateral brainstem or peripheral vestibular disorders. SVV tilts may coincide with or differ from the perception of body vertical, e.g., in isolated body lateropulsion

    EEG analysis of the visual motion activated vection network in left- and right-handers

    Get PDF
    Visually-induced self-motion perception (vection) relies on interaction of the visual and vestibular systems. Neuroimaging studies have identified a lateralization of the thalamo-cortical multisensory vestibular network, with left-handers exhibiting a dominance of the left hemisphere and right-handers exhibiting a dominance of the right hemisphere. Using electroencephalography (EEG), we compare the early processing of a vection-consistent visual motion stimulus against a vection-inconsistent stimulus, to investigate the temporal activation of the vection network by visual motion stimulation and the lateralization of these processes in left- versus right-handers. In both groups, vection-consistent stimulation evoked attenuated central event-related potentials (ERPs) in an early (160–220 ms) and a late (260–300 ms) time window. Differences in estimated source activity were found across visual, sensorimotor, and multisensory vestibular cortex in the early window, and were observed primarily in the posterior cingulate, retrosplenial cortex, and precuneus in the late window. Group comparisons revealed a larger ERP condition difference (i.e. vection-consistent stimulation minus vection-inconsistent stimulation) in left-handers, which was accompanied by group differences in the cingulate sulcus visual (CSv) area. Together, these results suggest that handedness may influence ERP responses and activity in area CSv during vection-consistent and vection-inconsistent visual motion stimulation

    DIZZYNET 2020: basic and clinical vestibular research united

    Get PDF
    Objective!#!To investigate diagnostic accuracy of a nerve ultrasound (US) protocol that is individualized to a patient's clinical deficits for the differentiation of amyotrophic lateral sclerosis with predominant lower motoneuron disease (ALS/LMND) and multifocal motor neuropathy (MMN).!##!Methods!#!Single-center, prospective, examiner-blinded, diagnostic study in two cohorts. Cohort I (model development): Convenience sample of subjects with ALS/LMND or MMN according to revised El-Escorial or EFNS guidelines. Cohort II (model validation): Consecutively recruited treatment-naïve subjects with suspected diagnosis of ALS/LMND or MMN. Cutoffs for 28 different US values were determined by Receiver Operating Curve (ROC) in cohort I. Area Under The Curve (AUC) of US was compared to nerve conduction studies (NCS). Diagnostic accuracy of US protocols, individualized according to clinical deficits, was compared to former rigid non-individualized protocols and to random examination site selection in cohort II.!##!Results!#!48 patients were recruited. In cohort I (28 patients), US had higher ROC AUCs than NCS, US 0.82 (0.12) (mean (standard deviation)), NCS (compound muscle action potential (CMAP) 0.60 (0.09), p < .001; two-sided t-test). US models based on the nerve innervating the clinically most affected muscles had higher correct classification rates (CCRs, 93%) in cohort II than former rigid protocols (85% and 80%), or models with random measurement site selection (66% and 80%).!##!Conclusions!#!Clinically guided US protocols for differentiation of ALS/LMND from MMN increase diagnostic accuracy when compared to clinically unguided protocols. They also require less measurements sites to achieve this accuracy

    Shift in lateralization during illusory self‐motion: EEG responses to visual flicker at 10 Hz and frequency‐specific modulation by tACS

    Get PDF
    Self‐motion perception is a key aspect of higher vestibular processing, suggested to rely upon hemispheric lateralization and alpha‐band oscillations. The first aim of this study was to test for any lateralization in the EEG alpha band during the illusory sense of self‐movement (vection) induced by large optic flow stimuli. Visual stimuli flickered at alpha frequency (approx. 10 Hz) in order to produce steady state visually evoked potentials (SSVEP s), a robust EEG measure which allows probing the frequency‐specific response of the cortex. The first main result was that differential lateralization of the alpha SSVEP response was found during vection compared with a matched random motion control condition, supporting the idea of lateralization of visual–vestibular function. Additionally, this effect was frequency‐specific, not evident with lower frequency SSVEP s. The second aim of this study was to test for a causal role of the right hemisphere in producing this lateralization effect and to explore the possibility of selectively modulating the SSVEP response. Transcranial alternating current stimulation (tACS ) was applied over the right hemisphere simultaneously with SSVEP recording, using a novel artefact removal strategy for combined tACS ‐EEG . The second main result was that tACS enhanced SSVEP amplitudes, and the effect of tACS was not confined to the right hemisphere. Subsequent control experiments showed the effect of tACS requires the flicker frequency and tACS frequency to be closely matched and tACS to be of sufficient intensity. Combined tACS ‐SSVEP s are a promising method for future investigation into the role of neural oscillations and for optimizing tACS

    Different EEG brain activity in right and left handers during visually induced self-motion perception

    Get PDF
    Visually induced self-motion perception (vection) relies on visual-vestibular interaction. Imaging studies using vestibular stimulation have revealed a vestibular thalamo-cortical dominance in the right hemisphere in right handers and the left hemisphere in left handers. We investigated if the behavioural characteristics and neural correlates of vection differ between healthy left and right-handed individuals. 64-channel EEG was recorded while 25 right handers and 25 left handers were exposed to vection-compatible roll motion (coherent motion) and a matched, control condition (incoherent motion). Behavioural characteristics, i.e. vection presence, onset latency, duration and subjective strength, were also recorded. The behavioural characteristics of vection did not differ between left and right handers (all p > 0.05). Fast Fourier Transform (FFT) analysis revealed significant decreases in alpha power during vection-compatible roll motion (p < 0.05). The topography of this decrease was handedness-dependent, with left handers showing a left lateralized centro-parietal decrease and right handers showing a bilateral midline centro-parietal decrease. Further time-frequency analysis, time locked to vection onset, revealed a comparable decrease in alpha power around vection onset and a relative increase in alpha power during ongoing vection, for left and right handers. No effects were observed in theta and beta bands. Left and right-handed individuals show vection-related alpha power decreases at different topographical regions, possibly related to the influence of handedness-dependent vestibular dominance in the visual-vestibular interaction that facilitates visual self-motion perception. Despite this difference in where vection-related activity is observed, left and right handers demonstrate comparable perception and underlying alpha band changes during vection

    Primary or secondary chronic functional dizziness: does it make a difference?

    Get PDF
    In 2017, the term \textquotedblpersistent postural-perceptual dizziness\textquotedbl (PPPD) was coined by the Bárány Society, which provided explicit criteria for diagnosis of functional vertigo and dizziness disorders. PPPD can originate secondarily after an organic disorder (s-PPPD) or primarily on its own, in the absence of somatic triggers (p-PPPD). The aim of this database-driven study in 356 patients from a tertiary vertigo center was to describe typical demographic and clinical features in p-PPPD and s-PPPD patients. Patients underwent detailed vestibular testing with neurological and neuro-orthoptic examinations, video-oculography during water caloric stimulation, video head-impulse test, assessment of the subjective visual vertical, and static posturography. All patients answered standardized questionnaires (Dizziness Handicap Inventory, DHI; Vestibular Activities and Participation, VAP; and Euro-Qol-5D-3L). One hundred and ninety-five patients (55%) were categorized as p-PPPD and 162 (45%) as s-PPPD, with female gender slightly predominating (♀:♂ = 56%:44%), particularly in the s-PPPD subgroup (64%). The most common somatic triggers for s-PPPD were benign paroxysmal positional vertigo (27%), and vestibular migraine (24%). Overall, p-PPPD patients were younger than s-PPPD patients (44 vs. 48~years) and showed a bimodal age distribution with an additional early peak in young adults (about 30~years of age) beside a common peak at the age of 50-55. The most sensitive diagnostic tool was posturography, revealing a phobic sway pattern in 50% of cases. s-PPPD patients showed higher handicap and functional impairment in DHI (47 vs. 42) and VAP (9.7 vs. 8.9). There was no difference between both groups in EQ-5D-3L. In p-PPPD, anxiety (20% vs. 10%) and depressive disorders (25% vs. 9%) were more frequent. This retrospective study in a large cohort showed relevant differences between p- and s-PPPD patients in terms of demographic and clinical features, thereby underlining the need for careful syndrome subdivision for further prospective studies

    IE-Vnet: deep learning-based segmentation of the inner ear's total fluid space

    Get PDF
    Background In-vivo MR-based high-resolution volumetric quantification methods of the endolymphatic hydrops (ELH) are highly dependent on a reliable segmentation of the inner ear's total fluid space (TFS). This study aimed to develop a novel open-source inner ear TFS segmentation approach using a dedicated deep learning (DL) model. Methods The model was based on a V-Net architecture (IE-Vnet) and a multivariate (MR scans: T1, T2, FLAIR, SPACE) training dataset (D1, 179 consecutive patients with peripheral vestibulocochlear syndromes). Ground-truth TFS masks were generated in a semi-manual, atlas-assisted approach. IE-Vnet model segmentation performance, generalizability, and robustness to domain shift were evaluated on four heterogenous test datasets (D2-D5, n = 4 × 20 ears). Results The IE-Vnet model predicted TFS masks with consistently high congruence to the ground-truth in all test datasets (Dice overlap coefficient: 0.9 ± 0.02, Hausdorff maximum surface distance: 0.93 ± 0.71 mm, mean surface distance: 0.022 ± 0.005 mm) without significant difference concerning side (two-sided Wilcoxon signed-rank test, p>0.05), or dataset (Kruskal-Wallis test, p>0.05; post-hoc Mann-Whitney U, FDR-corrected, all p>0.2). Prediction took 0.2 s, and was 2,000 times faster than a state-of-the-art atlas-based segmentation method. Conclusion IE-Vnet TFS segmentation demonstrated high accuracy, robustness toward domain shift, and rapid prediction times. Its output works seamlessly with a previously published open-source pipeline for automatic ELS segmentation. IE-Vnet could serve as a core tool for high-volume trans-institutional studies of the inner ear. Code and pre-trained models are available free and open-source under https://github.com/pydsgz/IEVNet

    The Longitudinal Effect of Vertigo and Dizziness Symptoms on Psychological Distress Symptom-Related Fears and Beliefs as Mediators

    Get PDF
    Despite the frequent observation that vertigo and dizziness (VD) disorders may trigger or exacerbate secondary psychiatric comorbidities, there is limited understanding of the mechanisms underlying this development. To address this gap, we investigated whether symptom-related fears and cognitions as indicated by questionnaire-based measures are mediators of the longitudinal effect of VD symptoms on anxiety and depression after 1 year. We analyzed data from a large study with patients of a treatment center specialized in vertigo (N = 210). Simple and multiple parallel mediation models strengthened our hypothesis that fear of bodily sensations and cognitions about these symptoms play a mediating role in the relationship between VD symptoms and psychopathology at follow-up after baseline scores of the outcome were controlled for. Results are discussed within a cognitive theory framework and point to the potential benefits of interventions that modify symptom-related beliefs and fears via cognitive psychotherapy in this therapeutically underserved population
    corecore